Asymmetric stem cell division: lessons from Drosophila.

نویسندگان

  • Pao-Shu Wu
  • Boris Egger
  • Andrea H Brand
چکیده

Asymmetric cell division is an important and conserved strategy in the generation of cellular diversity during animal development. Many of our insights into the underlying mechanisms of asymmetric cell division have been gained from Drosophila, including the establishment of polarity, orientation of mitotic spindles and segregation of cell fate determinants. Recent studies are also beginning to reveal the connection between the misregulation of asymmetric cell division and cancer. What we are learning from Drosophila as a model system has implication both for stem cell biology and also cancer research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signaling in stem cell niches: lessons from the Drosophila germline.

Stem cells are cells that, upon division, can produce new stem cells as well as daughter cells that initiate differentiation along a specific lineage. Studies using the Drosophila germline as a model system have demonstrated that signaling from the stem cell niche plays a crucial role in controlling stem cell behavior. Surrounding support cells secrete growth factors that activate signaling wit...

متن کامل

Drosophila Neuroblast Asymmetric Cell Division: Recent Advances and Implications for Stem Cell Biology

Asymmetric cell division is an evolutionarily conserved mechanism widely used to generate cellular diversity during development. Drosophila neuroblasts have been a useful model system for studying the molecular mechanisms of asymmetric cell division. In this minireview, we focus on recent progress in understanding the role of heterotrimeric G proteins and their regulators in asymmetric spindle ...

متن کامل

Molecular control of cell polarity and asymmetric cell division in Drosophila neuroblasts.

In the embryonic central nervous system of the fruit fly Drosophila, most neurons and glial cells are generated by asymmetric division of neural stem cells called neuroblasts. Several genes have been identified that are required for the establishment of neuroblast polarity, for the asymmetric segregation of cell fate determinants and for the proper orientation and geometry of the mitotic spindl...

متن کامل

Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe.

The proper balance between symmetric and asymmetric stem cell division is crucial both to maintain a population of stem cells and to prevent tumorous overgrowth. Neural stem cells in the Drosophila optic lobe originate within a polarised neuroepithelium, where they divide symmetrically. Neuroepithelial cells are transformed into asymmetrically dividing neuroblasts in a precisely regulated fashi...

متن کامل

Drosophila neuroblasts: a model for stem cell biology.

Drosophila neuroblasts, the stem cells of the developing fly brain, have emerged as a key model system for neural stem cell biology and have provided key insights into the mechanisms underlying asymmetric cell division and tumor formation. More recently, they have also been used to understand how neural progenitors can generate different neuronal subtypes over time, how their cell cycle entry a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Seminars in cell & developmental biology

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 2008